Hardware testing.jpg

NASA is partnering with Aerojet Rocketdyne to advance 3D printing technologies, known as metal additive manufacturing, for liquid rocket engines in landers and in-orbit stages/spacecraft.

The Robotic Deposition Technology team, led from Marshall Space Flight Center, is designing and manufacturing innovative and lightweight combustion chambers, nozzles, and injectors that will incorporate automated robotic deposition 3D-printing technologies: cold spray deposition, laser wire direct closeout, laser powder bed fusion, and laser powder directed energy deposition. The goal is to evolve these processes using weight-optimized materials to validate operability, performance, and reusability through hot fire testing.

The team recently hot fire tested their lightweight combustion chamber and nozzle. Other hardware for this testing included injectors and carbon composite nozzles that were recently tested under the Long Life Additive Manufacturing Assembly project.

“Testing of the RDT Advanced Lander Propulsion Additive Cold-spray Assembly chamber went very well and demonstrated a new technology capability for NASA and industry partners,” Thomas Teasley, an engineer at Marshall, said.

The hardware accumulated eight starts at 365.4 seconds of total hot fire duration. The main combustion chamber experienced pressures up to 750 pound-force per square inch for all tests conducted as well as calculated hot gas temperatures approaching 6,200 degrees Fahrenheit. Three different carbon composite nozzles designed for 7,000 pounds of thrust were also tested and demonstrated their capability to endure extreme environment conditions with measured nozzle temperatures of more than 4,000 degrees Fahrenheit.

“The RDT ALPACA effort between NASA and Aerojet Rocketdyne is another example of our collaboration and partnership in advancing additive manufacturing technologies,” Aerojet Rocketdyne Senior Engineer Bryan Webb said.

The team’s advancements will benefit future NASA and commercial space missions by providing more lightweight and cost-efficient liquid rocket engine parts instead of traditional hardware, which is heavier and typically comprised of more parts.

The team is funded by NASA’s Game Changing Development Program, which is a part of NASA’s Space Technology Mission Directorate.

(0) comments

Welcome to the discussion.

Keep it Clean. Please avoid obscene, vulgar, lewd, racist or sexually-oriented language.
Don't Threaten. Threats of harming another person will not be tolerated.
Be Truthful. Don't knowingly lie about anyone or anything.
Be Nice. No racism, sexism or any sort of -ism that is degrading to another person.
Be Proactive. Use the 'Report' link on each comment to let us know of abusive posts.
Share with Us. We'd love to hear eyewitness accounts, the history behind an article.